Transcomputation
 Dr James Anderson FBCS CITP CSci

Agenda

- Equations
- Functions
- Gradient

Equations

Equations

$$
a^{\circ} b^{\circ} c \ldots=A^{\circ} B^{\circ} C \ldots
$$

- An equation has a left- and right-hand side
- An equation is satisfied by any selection of arguments that makes it true
- An equation is not satisfied by any selection of arguments that makes it false

Functions

Functions

$$
f(a, b, c \ldots)=V
$$

- A function maps each allowable tuple, $\langle a, b, c \ldots\rangle$, of arguments in its domain to a single value, V, in its range
- If all tuples in the domain are allowable, the function is total
- If some tuples in the domain are not allowable, the function is partial

Functions

- We may want to know if the range contains all values of interest
- For example, does a line equation describe all lines?

Gradient

Ф •
 \section*{Gradient}

$\infty \quad$

Gradient

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

What is the gradient of a line running:

- Vertically upwards?
- Vertically downwards?
- Horizontally right?
- Horizontally left?

General line equation

$$
y=m x+c
$$

Sketch the functions:

- $y=\infty x$
- $y=-\infty x$
- $y=0 x$

Are these lines?

Puzzle

What is the gradient of a line that passes through the origin and the following point:

- $(\infty, 2)$
- $(\infty, 3)$
- Can any equation of Cartesian co-ordinates describe all transreal lines?

Puzzle

-What is the space of all transreal lines?

- How can we transform the transreal line onto all transreal lines?

Heuristics

- Start from a finite solution and totalise its domain over the transreals
- Try different total solutions until you find one whose range describes all and only the cases you are interested in
- You may need help from subject specialists to find solutions

Heuristics

- Computer graphics and digital geometry are good sources of total algorithms for solving geometrical problems. Perhaps one of these will generalise in a way that solves your problem?
- Many different solutions have been tried in the history of mathematics. Perhaps one of these will generalise in a way that solves your problem?

Heuristics

- Start from a total, transreal solution and manipulate its range until it does exactly what you want

Conclusion

$$
a^{\circ} b^{\circ} c \ldots=A^{\circ} B^{\circ} C \ldots
$$

- An equation is satisfied by any selection of arguments that makes it true
- An equation is not satisfied by any selection of arguments that makes it false

Conclusion

$$
f\left(a^{\circ} b^{\circ} c \ldots\right)=V
$$

- A function has exactly one value, V , for each allowable selection of arguments
- If all selections are allowable, the function is total
- If some selection is not allowable, the function is partial

Conclusion

- The line equation, $y=m x+c$, defines a total function, $f(x)=m x+c$, but they do not describe all lines, i.e. the range does not contain all lines
- Totalising the domain of a function is not enough. We also need a range that describes exactly what we want

